Category Archives: Problems with Solutions

Grade 4 MTAP Reviewer Set 9

Below is the 9th set of MTAP Reviewer for Grade 4.

1.) The quotient of two numbers is 3 and their difference is 16. What are the two numbers.

2.) What is the next number in the pattern 8, 11, 15, 20, 26, ___

3.) The surface area of a cube is 24 square centimeters. What is its volume?

4.) How many prime numbers are there between 1 and 20?

5.) The length of a rectangle is twice its width. Its area is 72 square meters. What is its length in meters?

6.) What is 2+ 32Continue reading

Solved Problem 1: Largest 3 Digit Number

What is the largest number 3-digit number that can be formed between 300 and than 800 using the digits 2, 5, 8 and 6 if the digits cannot be repeated?


In this problem, we need to find a 3 digit number that is more than 300 and less than 800.

Selecting the Hundreds Digit

There are only two possible number that can be placed in the hundred’s digit. Since the number that we are looking for is more than 300, we cannot place 2 in the hundred’s digit. Also, we cannot place 8 in the hundred’s digit since it will be more than 800. Therefore, we can only choose between 5 and 6. Since we want the largest number, we have to choose 6. So our number is 6AB where A and B are the tens and the ones digit respectively.  Continue reading

Shaded Area – Right Triangle Inscribed in a Circle

A right triangle is inscribed in a circle such that its longest side is the diameter of the circle. If the shorter sides of the triangle measure 6cm and 8cm, find the area of the shaded region. Use \pi = 3.14


A triangle inscribed in a circle with its longest side as the diameter of the circle is always a right triangle (by Thales’ Theorem). So, we can find the area A_T of the triangle.

right triangle inscribed in a circle

Finding the area of the triangle,

A_T = \frac{6 \times 8}{2} = 24Continue reading

Shaded Area – Square Inscribed in a Circle

The diagonal of the square inscribed in the circle below is 8cm. Find the shaded area. (Use pi = 3.14)

square inscribed in a circle









From the diagram above, we can get the shaded area by subtracting the area of the square from the area of the circle.

We let the diagonal of the square be the base of two the triangles. Next, we draw the height of one of the triangles. Continue reading