Tag Archives: 2015 mtap reviewers

2015 Grade 10 Math Challenge – Elimination Round with answer key – Part II

Below are the 2015 Grade 10 Math Challenge – Elimination Round questions and answers – Part II. More reviewers can be found on the Past Tests and All Posts pages.

26.) Solve the inequality: 3^{2x^2 + 3x - 2} > 1

27.) Two non-congruent circles have centers at C_1 and C_2. Diameter \overline {AB} of circle C_1 and diameter \overline {CD} of circle C_2 are perpendicular to \overline {{C_1}{C_2}} . If {C_1}{C_2} = 10, what is the area of the quadrilateral determined by A, B, C and D?

28.) Find the area of a triangle whose vertices have coordinates (2, 3), (-4, 2) and (10, 1).

29.) A jar contains only red and green balls. Ten red balls are added and the green balls now constitute 20% of the total. In addition, ten green balls are added, making the percentage of green balls equal to 40% of the total. How many balls were originally in the jar?

30.) If p + q = 22, what is the smallest value of p^2 + q^2?

Continue reading

2015 Grade 10 Math Challenge – Elimination Round with answer key – Part I

Below are the 2015 Grade 10 Math Challenge – Elimination Round questions and answers – Part I. More reviewers can be found on the Past Tests and All Posts pages.

1.) An item was already discounted by 10% but had to be discounted by another 10% to make the price even more attractive to the customers. Overall, by how many percent was the item discounted?

2.) If the numbers x – 4, 4 – x, and x form an arithmetic progression, what is x?

3.) Two sides of a triangle have lengths 15 and 25. If the thirds side is also a whole number, what is its shortest possible length?

4.) Find the equation of a line that passes through (5, 4) and is parallel to 3x + y = 1.

5.) What is the area of a triangle with sides 10, 10 and 12.

Continue reading